How Does residential inverter Work?

16 Jun.,2025

 

Solar Integration: Inverters and Grid Services Basics

What are Inverters?

An inverter is one of the most important pieces of equipment in a solar energy system. It’s a device that converts direct current (DC) electricity, which is what a solar panel generates, to alternating current (AC) electricity, which the electrical grid uses. In DC, electricity is maintained at constant voltage in one direction. In AC, electricity flows in both directions in the circuit as the voltage changes from positive to negative. Inverters are just one example of a class of devices called power electronics that regulate the flow of electrical power.

Link to Senergy

Fundamentally, an inverter accomplishes the DC-to-AC conversion by switching the direction of a DC input back and forth very rapidly. As a result, a DC input becomes an AC output. In addition, filters and other electronics can be used to produce a voltage that varies as a clean, repeating sine wave that can be injected into the power grid. The sine wave is a shape or pattern the voltage makes over time, and it’s the pattern of power that the grid can use without damaging electrical equipment, which is built to operate at certain frequencies and voltages.

The first inverters were created in the 19th century and were mechanical. A spinning motor, for example, would be used to continually change whether the DC source was connected forward or backward. Today we make electrical switches out of transistors, solid-state devices with no moving parts. Transistors are made of semiconductor materials like silicon or gallium arsenide. They control the flow of electricity in response to outside electrical signals.

If you have a household solar system, your inverter probably performs several functions. In addition to converting your solar energy into AC power, it can monitor the system and provide a portal for communication with computer networks. Solar-plus–battery storage systems rely on advanced inverters to operate without any support from the grid in case of outages, if they are designed to do so.

Toward an Inverter-Based Grid

Historically, electrical power has been predominantly generated by burning a fuel and creating steam, which then spins a turbine generator, which creates electricity. The motion of these generators produces AC power as the device rotates, which also sets the frequency, or the number of times the sine wave repeats. Power frequency is an important indicator for monitoring the health of the electrical grid. For instance, if there is too much load—too many devices consuming energy—then energy is removed from the grid faster than it can be supplied. As a result, the turbines will slow down and the AC frequency will decrease. Because the turbines are massive spinning objects, they resist changes in the frequency just as all objects resist changes in their motion, a property known as inertia.

As more solar systems are added to the grid, more inverters are being connected to the grid than ever before. Inverter-based generation can produce energy at any frequency and does not have the same inertial properties as steam-based generation, because there is no turbine involved. As a result, transitioning to an electrical grid with more inverters requires building smarter inverters that can respond to changes in frequency and other disruptions that occur during grid operations, and help stabilize the grid against those disruptions.

Grid Services and Inverters

Grid operators manage electricity supply and demand on the electric system by providing a range of grid services. Grid services are activities grid operators perform to maintain system-wide balance and manage electricity transmission better.

When the grid stops behaving as expected, like when there are deviations in voltage or frequency, smart inverters can respond in various ways. In general, the standard for small inverters, such as those attached to a household solar system, is to remain on during or “ride through” small disruptions in voltage or frequency, and if the disruption lasts for a long time or is larger than normal, they will disconnect themselves from the grid and shut down. Frequency response is especially important because a drop in frequency is associated with generation being knocked offline unexpectedly. In response to a change in frequency, inverters are configured to change their power output to restore the standard frequency. Inverter-based resources might also respond to signals from an operator to change their power output as other supply and demand on the electrical system fluctuates, a grid service known as automatic generation control. In order to provide grid services, inverters need to have sources of power that they can control. This could be either generation, such as a solar panel that is currently producing electricity, or storage, like a battery system that can be used to provide power that was previously stored.

Another grid service that some advanced inverters can supply is grid-forming. Grid-forming inverters can start up a grid if it goes down—a process known as black start. Traditional “grid-following” inverters require an outside signal from the electrical grid to determine when the switching will occur in order to produce a sine wave that can be injected into the power grid. In these systems, the power from the grid provides a signal that the inverter tries to match. More advanced grid-forming inverters can generate the signal themselves. For instance, a network of small solar panels might designate one of its inverters to operate in grid-forming mode while the rest follow its lead, like dance partners, forming a stable grid without any turbine-based generation.

Reactive power is one of the most important grid services inverters can provide. On the grid, voltage— the force that pushes electric charge—is always switching back and forth, and so is the current—the movement of the electric charge. Electrical power is maximized when voltage and current are synchronized. However, there may be times when the voltage and current have delays between their two alternating patterns like when a motor is running. If they are out of sync, some of the power flowing through the circuit cannot be absorbed by connected devices, resulting in a loss of efficiency. More total power will be needed to create the same amount of “real” power—the power the loads can absorb. To counteract this, utilities supply reactive power, which brings the voltage and current back in sync and makes the electricity easier to consume. This reactive power is not used itself, but rather makes other power useful. Modern inverters can both provide and absorb reactive power to help grids balance this important resource. In addition, because reactive power is difficult to transport long distances, distributed energy resources like rooftop solar are especially useful sources of reactive power.

What is a Solar Inverter and How Does it Work? - Fallon Solutions

Understanding Solar Systems:

With the increased interest in renewable energy sources across the globe, the interest in solar systems has also shot up at amazing rates. The ability of the sun to power an entire home is a huge environmental plus (think of all the electricity saved!) and is a great use of a resource that we have many hours of each and every week.

For more residential inverterinformation, please contact us. We will provide professional answers.

But, when it comes to solar systems, do you actually know what they are made up of and how they work? Solar systems consist of solar panels, (or photovoltaic (PV) panels), a solar inverter (super important) and a rack to keep everything in place. They may also contain a battery, depending on the system and an electric meter, and the amount and type of panels for each system will depend on the energy output needed. Considering how important and beneficial solar systems are, we thought we would put together a little information regarding solar inverters, how they work and what to look for in a good solar inverter, given their importance.

How Does a Solar Inverter Work?

A solar inverter works by taking in the variable direct current, or ‘DC’ output, from your solar panels and transforming it into alternating 120V/240V current, or ‘AC’ output. The appliances in your home run on AC, not DC, which is why the solar inverter must change the DC output that is collected by your solar panels.

To be a little more technical, the sun shines down on your solar panels (or photovoltaic (PV) cells), which are made of semiconductor layers of crystalline silicon or gallium arsenide. These layers are a combo of both positive and negative layers, which are connected by a junction. When the sun shines, the semiconductor layers absorb the light and send the energy to the PV cell. This energy runs around and bumps electrons lose, and they move between the positive and negative layers, producing an electric current known as direct current (DC). Once this energy is produced, it is either stored in a battery for later use or sent directly to an inverter (this depends on the type of system you have).

When the energy gets sent to the inverter, it is in DC format but your home requires AC. The inverter grabs the energy and runs it through a transformer, which then spits out an AC output. The inverter, in essence, ‘tricks’ the transformer into thinking that the DC is actually AC, by forcing it to act in a way like AC – the inverter runs the DC through two or more transistors that turn on and off super fast and feed two varying sides of the transformer.

Types of Solar Inverters

Now you know what a solar inverter is and how it works, it’s time to look at the different types of inverters. There are 5 different kinds of solar inverters, all with varying benefits :

  • Battery Inverters

A battery inverter is the best option if you are needing to retrospectively fit a battery into your solar system, or are wanting to keep your battery separate from your solar panels and run through a different inverter. A battery inverter converts your battery power into 230V AC and feeds it into your switchboard (instead of grid power) wherever possible.

  • Central Inverters

A central inverter is huge and is used for systems requiring hundreds of kilowatts (or even sometimes megawatts) of volume. They aren’t for residential use and resemble a large metal cabinet, with each ‘cabinet’ being able to handle around 500kW of power. They are generally used commercially for large-scale installations, or for utility-scale solar farms.

  • Hybrid Inverters

Hybrid inverters, otherwise known as ‘multi-mode inverters’, are pretty uncommon in Australia and allow you to connect batteries to your solar system. It engages with the connected batteries through ‘DC coupling’ (when both the solar and batteries use one inverter and the DC from the solar panels charges the batteries via a DC charger) and its electronics organise the charging and discharging of the battery.

  • Microinverters

As their name suggests, microinverters are super small (the size of a book!) and the ratio of solar panels to microinverters is 1:1. The benefit of a microinverter, among others, is that they optimise each solar panel individually, which offers more energy (especially in shady conditions).

  • String inverters

Last but not least, there are string inverters. String inverters are the most common inverter option for residential use, and there is usually 1 string inverter per solar installation. They are known as ‘string inverters’ due to the fact that a string of solar panels is connected to them.

Are you interested in learning more about solar inverter manufacturer? Contact us today to secure an expert consultation!