How Does Electric Bicycle Work?

01 Sep.,2025

 

How Do Electric Bikes Work? | Schwinn

At first glance, it seems like a pretty easy question to answer: How do e-bikes work?

The short answer is that e-bikes use electricity to help propel the bike forward. But it's a bit more complicated and – nerd alert! – fascinating than that. With e-bikes still the fastest growing category of the bicycle industry it seems as good a time as any to take a bit of deeper dive into how e-bikes work and why the addition of electricity makes the bike riding experience even more awesome.

We need a dash of history and a primer on a couple key points before we can fully answer the question on how e-bikes work, so let's "charge" right in, shall we?

Seven Running are exported all over the world and different industries with quality first. Our belief is to provide our customers with more and better high value-added products. Let's create a better future together.

The Big Three

Regardless of which brand or style of e-bike you ride, there are three main components of an e-bike that differ vastly from what's found on a conventional bicycle. All e-bikes have a motor, a battery, and a method of delivery for the electricity. Those three components are what make an e-bike an e-bike.

Here at Schwinn, our e-bikes generally all use the same style of motor, battery, and delivery of electrical assistance. There are some differences, depending on the model, but there's a lot of commonality. Let's take a closer look at each of those three components with the help of Chuck McFarland, a senior product manager on our e-mobility team.

The Oomph: E-Bike Motors

All of Schwinn's e-bikes use a 250-watt brushless rear hub motor that's located on the back wheel. A brushless motor uses magnets to create a rotating magnetic field that cause it to spin. These motors requires little to no maintenance and the end result is they end up adding power to, and propelling, the back wheel.

In simple terms, a hub motor collects the electricity that comes from the battery and converts that electricity into power that moves the rear wheel of the bike forward.

"When you ride a bike with a rear hub drive you get the sensation of being pushed," Chuck said. "It feels like there's a strong tailwind at your back."

The brushless hub motors have series of magnets inside them that act as sensors to gauge how often the pedals are turned over. That helps the motor determine how much energy to use (or how hard to push) based on what the level of assist the rider wants to add to their ride.

Hub motors are commonly used by a whole host of e-bike manufacturers. One reason, said Chuck, is they make e-bikes affordable and accessible to most people and don't require special upkeep.

The Juice: E-Bike Batteries

When e-bikes burst upon the scene in the s, they were limited by heavy and bulky lead-acid batteries. Technological advancements to rechargeable lithium-ion batteries came in the mid to late s and really spurred the e-bike movement across the entire bicycling industry.

Lithium-ion batteries are light, affordable, and easy to recharge. They are also readily available in several wattages. At Schwinn, our smaller (less wattage) batteries provide up to 20 miles per charge while our largest batteries (more wattage) can deliver up to 80 miles between charges.

Chuck said riders should think of the battery as a gas tank in a motor vehicle. Larger capacity batteries that provide more watt hours don't make the bike any faster, they just allow them to go farther – just like a car with a larger gas tank can travel farther than the same car with a small tank. All Schwinn bikes are classified as "Class 2 e-bikes," meaning they are legal to ride just about any place any conventional bike is allowed, have a maximum speed of 20 mph, and are throttle assisted. The capacity of the battery they use doesn't change that.

On most of Schwinn's bikes, the battery is located on the down tube of the bike frame, but on our Mendocino models, the battery is mounted above the rear tire on a rack.

Pedal assist is exactly what it sounds like. The rider can control how much extra power is required to supplement their own pedaling. Adding just a bit of power makes pedaling a little bit easy. Adding a lot of power makes pedaling a lot easier. You might want to maximize the power that's assisting your pedaling, for instance, if you're climbing a hill.

"The control is the brain," said Chuck. "You can choose your level of assist, or you can use full power and use the throttle. The throttle will override the pedaling."

Think of the throttle like a gas pedal. The more you use it, the more electricity you're taking from the battery.

And Now You Know

So, as you can see, the answer to the question "how do e-bikes work?" is a little more complex than the simplified answer what we started with. Let's summarize it this way: An e-bike rider controls the amount of electricity produced from a lithium-ion battery delivered to a hub motor that uses that energy to move the bike forward.

At least for now, that is. As technological advances come about, it likely means there will be changes coming to e-bikes.

"Once you ride an e-bike, you really see the benefits of it," Chuck said. "With that, and the level of interest in e-bikes, there's new technology coming that will likely have an impact."

What Are Electric Bikes? How Do They Work? - EVELO

Electric bikes pedal and handle just like a regular bicycle. By and large, an electric bike will use the same parts too. The electric component is meant to augment human power, not completely replace it. It makes obstacles like hills and headwind more manageable and allows you to travel further without getting as tired.

See our diagram for a more detailed look at how electric bikes work including the motor, battery, drivetrain, and charging process:

Electric bike motors come in a wide variety of power ratings, from 200W to 1,000W or more. The legal limit in the US is 750W, although different states can set their own limits.

Think of this limit kind of like horsepower. A higher rating means that the bike will be able to pull more weight with greater ease – but at the expense of using more battery capacity while doing so. Consequently, a 750W motor will drain the battery much quicker than a 250W one, but it will be more powerful.

One more factor needs to be considered, however. The design and location of the motor plays an important role in how electric bikes work.

If you are looking for more details, kindly visit Electric Bicycle.

The most common type of motor for electric bikes is called a hub motor. It is generally integrated into the rear or front wheel. When engaged, it pulls or pushes the wheel along. Although this system works well, it has one key disadvantage. Since it is not connected to the bike’s gears, it loses efficiency on hills and varied terrain. Imagine driving a vehicle in just one gear the entire day. It will get you places, but it won’t give you the optimum amount of torque or speed that you get with a full gear range.

At EVELO, we offer a patented mid-drive motor, which is integrated with the crank and the gears. This adds several advantages:

  • Increased performance while spending less battery energy, since the mid-drive motor uses the bike’s existing gears;
  • Much better hill climbing power, since you can switch gears depending on the incline; and
  • Handling is improved, since the motor is positioned closer to the ground, keeping the weight centered and low.

Available in a variety of styles, the controller lets you operate the electric assistance on your electric bike and is an important part in how electric bikes work. The controller is located on the handlebar for ease of use. There are two main styles of controllers – pedal-activated and throttle-based controllers.

Pedal-activated systems offer electric assistance as you press down on the pedals. There is no need to engage a throttle – simple pedaling will do the trick. Electric bikes with pedal-activated systems have a controller mounted on the handlebar that lets you adjust the level of assistance that you receive as you pedal. You can dial in the amount of assistance you want, ranging from no assistance to a great deal of assistance.

Throttle-based controllers work with a simple throttle mechanism. The throttle will either be a twist-grip type or a thumb-press type. With a throttle, you simply pull back or press the throttle to receive the electric assistance. Some electric bikes require nothing more than activating the throttle, allowing you to ride without pedaling.

By and large, electric bikes are simple to use, ride, and maintain. Overall, they require little maintenance beyond that which a standard bike requires.

In this mode, you can take advantage of combined human plus electric power. Once you turn on this mode via the on/off button on the handlebars, the motor will gently provide electric power as you pedal. You can still switch gears as the terrain changes to take advantage of more torque or faster speed. It’s an amazing feeling to use pedal-assist mode, as it makes cycling effortless, flattens out the hills, and frees you to just enjoy yourself and the scenery.

Pedal-assist mode provides three levels of assistance: Low (30%), Medium (60%) and High (100%). The percentage simply indicates how much additional power the motor will provide to complement your pedaling. The low setting adds an additional 30% of power to your pedaling, while High essentially doubles it. A simple press of a button switches you through the different levels.

Electric bikes are still a fairly new concept in the US, so there is a lot of confusion about how the law views them. Federal law considers electric bicycles in the class as regular bicycles, provided they meet two conditions: (1) the top speed in “electric only” mode is 20 miles per hour; and (2) the motor power must be no more than 750W.

Electric bikes are still a fairly new concept in the US, so there is a lot of confusion about how the law views them. Federal law considers electric bicycles in the class as regular bicycles, provided they meet two conditions: (1) the top speed in “electric only” mode is 20 miles per hour; and (2) the motor power must be no more than 750W.

Consequently, electric bikes do not need a special registration, license, or insurance to operate. Moreover, they enjoy the same privileges as regular bicycles, such as being allowed to travel in available bike lanes.

However, different states have their own special requirements regarding electric bike use. While most follow the federal lead, some do vary. If you have questions about how electric bikes work in your state, you can get in touch with us and we’ll point you in the direction to find out additional information for your state. For your own personal safety, we recommend helmet use and lights and reflecting gear, even if the law does not specifically require them.

Are you interested in learning more about Electric Scooter for Kids? Contact us today to secure an expert consultation!