Experimental and numerical studies on aluminum-stainless steel explosive cladding

11 Apr.,2023

 

  1. LU Y, MAYTON E, SONG H, KIMCHI M, ZHANG W. Dissimilar metal joining of aluminum to steel by ultrasonic plus resistance spot welding-Microstructure and mechanical properties [J]. Materials and Design, 2019, 165: 107585. DOI: https://doi.org/10.1016/j.matdes.2019.107585.

  2. ACEVES S M, ESPINOSA-LOZA F, ELMER J W, HUBER R. Comparison of Cu, Ti and Ta interlayer explosively fabricated aluminum to stainless steel transition joints for cryogenic pressurized hydrogen storage [J]. International Journal of Hydrogen Energy, 2015, 40(3): 1490–1503. DOI: https://doi.org/10.1016/j.ijhydene.2014.11.038.

  3. CORIGLIANO P, CRUPI V, GUGLIELMINO E, SILI A M. Full-field analysis of AL/FE explosive welded joints for shipbuilding applications [J]. Marine Structures, 2018, 57: 207–218. DOI: https://doi.org/10.1016/j.marstruc.2017.10.004.

  4. SARAVANAN S, RAGHUKANDAN K, KUMAR P. Effect of wire mesh interlayer in explosive cladding of dissimilar grade aluminum plates [J]. Journal of Central South University, 2019, 26(3): 604–611. DOI: https://doi.org/10.1007/s11771-019-4031-9.

  5. CARVALHO G H S F L, GALVÃO I, MENDES R, LEAL R M, LOUREIRO A. Formation of intermetallic structures at the interface of steel-to-aluminium explosive welds [J]. Materials Characterization, 2018, 142: 432–442. DOI: https://doi.org/10.1016/j.matchar.2018.06.005.

  6. SARAVANAN S, INOKAWA H, TOMOSHIGE R, RAGHUKANDAN K. Effect of silicon carbide particles in microstructure and mechanical properties of dissimilar aluminium explosive cladding [J]. Journal of Manufacturing Processes, 2019, 47: 32–40. DOI: https://doi.org/10.1016/j.jmapro.2019.09.027.

  7. GLADKOVSKY S V, KUTENEVA S V, SERGEEV S N. Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding [J]. Materials Characterization, 2019, 154: 294–303. DOI: https://doi.org/10.1016/j.matchar.2019.06.008.

  8. WANG Y, LI X, WANG X, YAN H. Fabrication of a thick copper-stainless steel clad plate for nuclear fusion equipment by explosive welding [J]. Fusion Engineering and Design, 2018, 137: 91–96. DOI: https://doi.org/10.1016/j.fusengdes.2018.08.017.

  9. ZENG X Y, WANG Y X, LI X Q, LI X J, ZHAO T J. Effects of gaseous media on interfacial microstructure and mechanical properties of titanium/steel explosive welded composite plate [J]. Fusion Engineering and Design, 2019, 148: 111292. DOI: https://doi.org/10.1016/j.fusengdes.2019.111292.

  10. ZHANG H, JIAO K X, ZHANG J L, LIU J. Experimental and numerical investigations of interface characteristics of copper/steel composite prepared by explosive welding [J]. Materials and Design, 2018, 154: 140–152. DOI: https://doi.org/10.1016/j.matdes.2018.05.027.

  11. GUO X, TAO J, WANG W, LI H, WANG H C. Effects of the inner mould material on the aluminium-316L stainless steel explosive clad pipe [J]. Materials and Design, 2013, 49: 116–122. DOI: https://doi.org/10.1016/j.matdes.2013.02.001.

  12. SARAVANAN S, RAGHUKANDAN K. Influence of interlayer in explosive cladding of dissimilar metals [J]. Materials and Manufacturing Processes, 2013, 28(5): 589–594. DOI: https://doi.org/10.1080/10426914.2012.736665.

  13. REN Bao-xiang, TAO Gang, WEN Peng, DU Chang-xing. Study on weldability window and interface morphology of steel tube and tungsten alloy rod welded by explosive welding [J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105005. DOI: https://doi.org/10.1016/j.ijrmhm.2019.105005.

  14. YANG M, SHEN Z W, CHEN D G, DENG Y X. Microstructure and mechanical properties of Al-Fe meshing bonding interfaces manufactured by explosive welding [J]. Transactions of Nonferrous Metals Society of China, 2019, 29(4): 680–691. DOI: https://doi.org/10.1016/S1003-6326(19)64978-2.

  15. SARAVANAN S, RAGHUKANDAN K. Energy dissipation in explosive welding of dissimilar metals [J]. Materials Science Forum, 2011, 673: 125–129. DOI: https://doi.org/10.4028/www.scientific.net/MSF.673.125.

  16. SATYANARAYAN, MORI A, NISHI M, HOKAMOTO K. Underwater shock wave weldability window for Sn-Cu plates [J]. Journal of Materials Processing Technology, 2019, 267: 152–158. DOI: https://doi.org/10.1016/j.jmatprotec.2018.11.044.

  17. LIU M B, ZHANG Z L, FENG D L. A density-adaptive SPH method with kernel gradient correction for modeling explosive welding [J]. Computational Mechanics, 2017, 60(3): 513–529. DOI: https://doi.org/10.1007/s00466-017-1420-5.

  18. HEUZÉ O. General form of the Mie-Grüneisen equation of state [J]. Comptes Rendus Mecanique, 2012, 340(10): 679–687. DOI: https://doi.org/10.1016/j.crme.2012.10.044.

  19. SOMASUNDARAM S, KRISHNAMURTHY R, KAZUYUKI H. Effect of process parameters on microstructural and mechanical properties of Ti-SS 304L explosive cladding [J]. Journal of Central South University, 2017, 24(6): 1245–1251. DOI: https://doi.org/10.1007/s11771-017-3528-3.

  20. YANG M, MA H, SHEN Z. Study on explosive welding of Ta2 titanium to Q235 steel using colloid water as a covering for explosives [J]. Journal of Materials Research and Technology, 2019, 8(6): 5572–5580. DOI: https://doi.org/10.1016/j.jmrt.2019.09.025.

  21. SATYANARAYAN, TANAKA S, MORI A, HOKAMOTO K. Welding of Sn and Cu plates using controlled underwater shock wave [J]. Journal of Materials Processing Technology, 2017, 245: 300–308. DOI: https://doi.org/10.1016/j.jmatprotec.2017.02.030.

  22. TAMILCHELVAN P, RAGHUKANDAN K, SARAVANAN S. Kinetic energy dissipation in Ti-SS explosive cladding with multi loading ratios [J]. IJST-Transactions of Mechanical Engineering, 2014, 38(M1): 91–96. https://ww.sid.ir/en/VEWSSID/J_pdf/8542014M112.pdf.

  23. SARAVANAN S, RAGHUKANDAN K, HOKAMOTO K. Improved microstructure and mechanical properties of dissimilar explosive cladding by means of interlayer technique [J]. Archives of Civil and Mechanical Engineering, 2016, 16(4): 563–568. DOI: https://doi.org/10.1016/j.acme.2016.03.009.

  24. BATAEV I A, LAZURENKO D V, TANAKA S, HOKAMOTO K, BATAEV A A, GUO Y, JORGE J A M. High cooling rates and metastable phases at the interfaces of explosively welded materials [J]. Acta Materialia, 2017, 135: 277–289. DOI: https://doi.org/10.1016/j.actamat.2017.06.038.

  25. SARAVANAN S, RAGHUKANDAN K. Thermal kinetics in explosive cladding of dissimilar metals [J]. Science and Technology of Welding and Joining, 2012, 17(2): 99–103. DOI: https://doi.org/10.1179/1362171811Y.0000000080.

  26. ATHAR M H, TOLAMINEJAD B. Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding [J]. Materials and Design, 2015, 86: 516–525. DOI: https://doi.org/10.1016/j.matdes.2015.07.114.

  27. KUMAR C W D, SARAVANAN S, RAGHUKANDAN K. Influence of grooved base plate on microstructure and mechanical strength of aluminum-stainless steel explosive cladding [J]. Transactions of the Indian Institute of Metals, 2019, 72(12): 3269–3276. DOI: https://doi.org/10.1007/s12666-019-01795-w.

  28. ZHANG Z L, LIU M B. Numerical studies on explosive welding with ANFO by using a density adaptive SPH method [J]. Journal of Manufacturing Processes, 2019, 41: 208–220. DOI: https://doi.org/10.1016/j.jmapro.2019.03.039.

  29. ZHOU Q, FENG J, CHEN P. Numerical and experimental studies on the explosive welding of tungsten foil to copper [J]. Materials, 2017, 10(9): 984. DOI: https://doi.org/10.3390/ma10090984.

  30. LIU R, WANG W, ZHANG T, YUAN X. Numerical study of Ti/Al/Mg three-layer plates on the interface behavior in explosive welding [J]. Science and Engineering of Composite Materials, 2017, 24(6): 833–843. DOI: https://doi.org/10.1515/secm-2015-0491.

If you have any questions on Monel Wire Mesh. We will give the professional answers to your questions.